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Abstract

The M3D code [1] has been using linear finite elements to represent multilevel MHD
on 2D poloidal planes. Triangular higher order elements, up to third order are con-
structed here in order to provide M3D the capability to solve highly anisotropic
transport problems. It is found that higher order elements are essential to resolve
the thin transition layer characteristic of the anisotropic transport equation, particu-
larly when the strong anisotropic direction is not aligned with one of the Cartesian
coordinates. The transition layer is measured by the profile width, which is zero
for infinite anisotropy. It is shown that only higher order schemes have the ability
to make this layer converge towards zero when the anisotropy gets stronger and
stronger. T'wo cases are considered. One has the strong transport direction partially
aligned with one of the element edges, the other doesn’t have any alignment. Both
cases have the strong transport direction misaligned with the grid line by some
angles.
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1. Introduction

As pointed out in [2], misalignment between the mesh and the magnetic field
often occurs in plasma modeling, and when not aligned, a numerical cross-flux
can be generated that pollutes the solution. The numerical errors caused by
such misalignment have been discussed in a number of studies in order to
understand this spurious effect.
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In [3] and [4], bilinear finite elements were used to treat a complex edge plasma.
It was found that the finite element mesh must obey certain requirements, im-
posed by the anisotropy with regard to parallel and cross-field transport in
the plasma edge region. In particular, the element has to have one or two
edges aligned to the poloidal magnetic field in order to guarantee an accurate
numerical solution. In order to do so, they introduced an Unstructured Mesh
Generator to keep the average misalignment to a few degrees, and a Struc-
tured Flux-surface Fitted Mesh Generator to keep it well below one degree.
It was also found in [2] that when using higher order finite differences, the
misalignment has to be very small in order to avoid unacceptable numerical
pollution in practical edge plasma modeling.

M3D [1] has been using linear finite elements [5] on an unstructured triangular
mesh to represent multilevel MHD. It is now realized that upgrading M3D
to use higher order elements will allow the code to also accurately compute
highly anisotropic heat transport. Here we examine the second and third order
Lagrange elements and focus on analyzing the numerical error associated with
misalignment of these elements.

The model problem we consider is the steady-state anisotropic heat conduction
equation [2] in 2D:

V- (RVT) = 0. (1)

Where T is the temperature and K is the conductivity tensor. This can be
written in the orthogonal coordinates (£, n) aligned with the transport axes as

o or o oT

a—glﬁga—g + a—nlina—n =0. (2)

Without loss of generality we assume k¢ > k,, so that the strong transport
direction is aligned with £. Define the anisotropy rate as A, = k¢/ky.

Consider Cartesian coordinates (x,y) that are not aligned with the transport
axes, and denote the misalignment angle between x and £ is by 6,,. Equation
(2) then has the form:

8A8T 8BaT GCGT 808T .

a—x 8_x+8_y 8—y+8_x a—y+a—y a—oa (3)



with

A = kg cos? Oy, + Ky SIn? O,
B = k¢ sin® 0y, + Ky cos? Oy, (4)

C = (ke — Ky) sin® Oy, cos? O,y,.

We will solve Eq.(3) on a rectangle domain ABCD: [0, L,] % [0, L,] with Dirich-
let boundary conditions, as shown in Fig. 1. For clarity, x and 6,, are assumed
to be constant over the domain.

2. Lagrange Higher Order Elements

The high order Lagrange basis functions on a triangle element are constructed
using the barycentric coordinate («, 8), which are nonorthogonal coordinates.
Any point P on the triangle is identified with coordinates (A1, A2, A3) where
A =a, Ay =0, A3 =1 —a— . Obviously,

/\1 + /\2 + )\3 - ]_
The three vertices of the triangle are given by (1,0, 0), (0, 1,0), (0,0, 1) (figure

2(a)). A; is the area of the triangle given by 3 vertices (vq, P, v3), Ay the triangle
(vs, P,v1), and A3 the triangle (v, P, vy).

The linear basis functions in a triangle element are

Ni=X\
Ny =), (5)
N3 = As

and the 3 nodes are located at the triangle vertices.

For the second order elements, the first 3 nodes are located at the vertices,
and the next 3 nodes are located at the midpoint of each side. The vertices
are numbered 1,2,3 in counterclockwise order. Between vertex 1 and 2 is node
4. Between vertex 2 and 3 is node 5. Between vertex 3 and 1 is node 6 (figure



2(b)). The Lagrange basis functions in terms of the linear basis are

Nl = )\1(2/\1 - 1)
N2 == )\2(2/\2 - 1)
N3 == )\3(2/\3 - 1)

(6)
N4 - 4)\1)\2
N5 = 4)\2)\3
N6 = 4)\3)\1.

For the third order elements, the first 3 nodes of the triangle are located at
the vertices. The next 6 nodes are located 1/3 and 2/3 of the way down each
side. The vertices are numbered 1,2,3 in the counterclockwise. Between vertex
1 and 2 are nodes 4 and 5. Between vertex 2 and 3 are nodes 6 and 7. Between
vertex 3 and 1 are nodes 8 and 9. The last, bubble node, is inside the triangle,
at the intersection of the straight lines connecting the nodes 4 and 7, nodes 5
and 8, as well as nodes 6 and 9 (figure 2(c)). The Lagrange basis functions in
terms of the linear basis are

Ny =X(38N —1)(3A —2)/2
No = X3 — 1)(3Xg — 2)/2
N3y = X3(3\3 —1)(3X3 — 2)/2
Ny = (9/2)A1 2237\ — 1)
N5 = (9/2)A1A2(3X2 — 1) )
Ne = (9/2)AaA3(3Xy — 1)
N7 =(9/2)A2A3(3A5 — 1)
Ng = (9/2)A3M1(3A3 — 1)
Ny = (9/2)A3A\1(3M1 — 1)
Nig = 27TA1 Ao
The basis functions have the Lagrange property
Ni(ay, Bj) = b (8)

where (a;, 3;) are the values of (o, ) at the nodal points j. The coordinates



of the triangles are given by an isoparametric mapping

T = Zf\; z; N;
y= Zi]\il Yi N

(9)

where N is the number of the nodes in an element, Here N = 3 for linear,
N = 6 for second order, N = 10 for third order elements.

A fundamental operator is the Poisson bracket

_ 0adb  Oa db

[aab]zaﬁ—%a- (10)

When a, b are expanded in basis functions /V;, we need to evaluate the bracket
of linear basis functions. It is the tensor defined by
0 1 -1
€ =[N = -1 0 1 (11)
1 -10

and then the bracket of basis functions has the form

ON; ON;
ON, O\

Eij =[Ni,Nj] =)
kl

(12)

The fundamental integrals are the element contribution to the mass matrix
and stiffness matrix,
M;; = [ [ NiN;dzdy
= [ [ NiN;Jdadp
Sij = [ JVN;-S( n)VN;dzdy
= [[VN;-S(&,n)VN;Jdadf

(13)

where S(&,n) stands for A, B, or C given in Eq.(4), and J represents the
Jacobian of the coordinate transformation between (x,y) and the barycentric
coordinate («, f3),

J=[z,y] = ) Eijzy;. (14)

4,j=1



The evaluation of the stiffness matrix needs the following relations

G = 5Nyl = 5 X0 Eijy;

oN; 1 1 <N (15)
By =~ 7N, a] = —5 i By

where z,y are expanded in basis functions by Eq.(9).

The integral in Eq.(13) has to be done numerically by evaluating the integra-
tion at a set of N quadrature points (ag, 8,) and applying weights w, at the
quadrature points,

| [ (e B)dads ~ éf(aa, B (16)

In the case that the quadrature points are the same as the nodal points, the
Lagrange property gives a diagonal mass matrix. However, this approximation
is not accurate enough in general. Perhaps it could be used for only the mass
matrix, and a more accurate approximation used for stiffness matrix. Sets of
Gaussian quadrature points and weights are given in [6].

3. Numerical Experiments

The numerical calculation is set up in parallel on a multi-processor with dis-
tributed memory using MPI. Two cases are to be discussed:

Case a, Fig. 1(a). T=0 on side [AD-DC]J; T=1 on side [AB-BC]. The strong
transport direction, £, is aligned with the grid diagonal [AC] instead of the grid
line z. The misalignment angle is the angle BAC, 6,, = arctan(L,/L,). For
infinite anisotropy, the exact solution becomes: 7' = 0 above the grid diagonal
[AC]; T = 1 below the grid diagonal [AC]. and the width of the transition
zone is zero. For a finite value of anisotropy, the exact solution introduces an
internal layer which has non-zero transition width.

Case b, Fig. 1(b). We impose a shift of the alignment of the strong transport
direction from the grid diagonal [AC] to the non-diagonal [EF] such that: T=1
on side [EA-AB-BF]; T=0 on side [ED-DC-CF]|. The misalignment angle is
given by 6, = arctan((L, — [AE] — [CF])/L;). For infinite anisotropy, the
exact solution becomes: 7" = 0 above the grid diagonal [EF]; T =1 below the
grid diagonal [EF]. and the width of the transition zone is zero. For a finite
value of anisotropy, the exact solution introduces an internal layer which has
a non-zero transition width.



The profile width defined in [2] is used to measure the transient layer. It is
the half-width, w, between the contour lines with 7" = 0.25, and T = 0.75
measured along the y direction through the mid-point.

As shown in Fig. 3, the unstructured triangular mesh is formed by first divid-
ing the rectangular domain ABCD into rectangular cells uniformly: [0, V] X
[0, N,]. Then each of the rectangle grids is subdivided into two triangles such
that the element has one edge aligned with the strong anisotropy direction on
the lower-left and upper-right blocks for Type 1 b.c., given above. But if it is
used with Type 2 b.c., there is no alignment.

Eq.(3) is solved first on Type 1 b.c.. Contours of T are plotted in Fig. 4 with
anisotropy fixed at (k¢ = 10°). Note that there are 7 contour lines drawn
in each subplot. Counting from color green to red, they are 7' = 0.125,7 =
0.25,T = 0.50,7 = 0.625,T = 0.75, and T = 0.875 contour lines, respectively.
This is the same for all the contour plots to be shown below.

The 1st row is calculated using first order elements (5) with increasing grid
resolution. As the grid gets finer and finer, the profile width is reduced, but
not significantly. A dramatic improvement starts in the 2nd row, which is the
motivation of this work. In the 2nd row, you can see that the width gets much
narrower. This is due to the second order elements defined in Eq.(6). The
transition layer is represented much better, even on the coarsest grid, by the
second order elements than it is on finest grids by first order elements. The
3rd row is obtained by applying the third order elements defined in Eq.(7).
Clearly this layer is narrowed down to another new level.

In figure 5, the contour is plotted against the increasing anisotropy. Here
ke takes the values 10',10° 10° 107,10° while the grid resolution is fixed
at 59 x 59. Third order elements have been applied. When the anisotropy
increases, we see from the figure that the transition layer becomes narrower and
narrower, converging towards zero. This is consistent with the exact solution,
since for extreme cases when ¢ — oo, the width w — 0.

For these cases, the strongly anisotropic diffusion direction was aligned with
one of the element edges at the lower-left and upper-right blocks. We next
consider the case when there is no alignment: i.e. the shifted Type 2 b.c.. The
same calculations shown in Figs. 4 and 5 have been repeated and demonstrate
the same characteristic behavior, as seen in Figs. 6 and 7. The numerical
broadening depends weakly on grid resolution, but strongly on the order of
the schemes applied. The transition layer again shows a convergence towards
zero when the anisotropy increases.

The width of the transition layer given in Figs. 5 and 7 are measured using
a matlab function written by M. V. Umansky. They are plotted against the
anisotropy k¢ in Fig. 8. Clearly, the width is broadened for Type 2 b.c. where



no alignment exists at all. Line a is the width corresponding to linear elements
with Type 1 b.c.; Line b is for third order elements with Type 1 b.c.; Line cis
for third order elements with Type 2 b.c.. Due to the higher order and partial
alignment, line b gives better convergence than line a. Line c is widened about
1.16 times by the pitch angle 6, as compared to line b.

4. Conclusions and Future Works

The numerical solution of the highly anisotropic transport equations can be
difficult when the computational grid is not aligned with the strong transport
direction. A transition layer was introduced by the perpendicular conduction
ky. Here we discussed using higher order Lagrange elements to resolve this
thin layer. The calculations were carried out on 2 types of misalignments: one
has one element edge partially aligned with the strong anisotropy direction;
the other one has no alignment at all.

The numerical experiment shows that the higher order elements bring essential
convergence of this layer toward zero when the anisotropy increases, which is
expected according to the exact solution. On the other hand, some dependence
on the pitch angle 6, and grid resolution was observed, but in a much less
significant manner for the type of mesh presented in Fig. 3.

In the near future, we will compare these results to the finite difference results
given in [2] and study the profile width dependence of pitch angle and grid
resolution when using the C! elements [7]. We also note that the Adapted
Mesh Refinement (AMR) could be introduced in the thin interface layer in
order to improve numerical efficiency .
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Figure 1. The boundary condition used to solve the anisotropic transport
equation, L, = L, = 1. (a) T=0 is specified on side [AD-DC], T=1 on [AB-
BC], so that the anisotropy direction is aligned with the grid diagonal [AC]. (b)
The boundary condition is shifted, so that the anisotropy direction is aligned
with the [EF]. T=0 is specified on side [ED-DC-CF], T=1 on [EA-AB-BF].

Figure 2. The Lagrange Basis functions: (a) first order, 3 vertices. (b) second
order. 6 vertices, and (c) third order, 10 vertices.

Figure 3. Mesh on which the anisotropic transport equation is solved. One edge
of triangles at the upper-left and lower-right block is aligned with the diagonal
[BD]; one edge of triangles at the lower-left and upper-right block is aligned
with the diagonal [AC]|. Therefore, the strong anisotropy direction is aligned
with one edge of the triangles at the 2 blocks: lower-left and upper-right.

Figure 4. The contour plots of T by different grid resolution, 29 x 29,39 x
39,49 x 49,59 x 59: (1) 1st row: first order elements. (2) 2nd row: second
order elements. (3) 3rd row: third order elements. Type 1 b.c. is used, and
ke = 10% is fixed. While the profile width is reduced by finer grids to some
extent (looking from left-right at 1st row), the higher order schemes bring in
essential improvement. (looking from up-down at each columns).

Figure 5. The contour plots of T at different ¢ : 10*,103,10°,107,10° by third
order elements. Type 1 b.c. is used, and the grid resolution is fixed at 59 x 59.
As the anisotropy is getting stronger and stronger, the profile width shows a
convergence towards zero.

Figure 6. The contour plots of T by different grid resolution, 29 x 29,39 x
39,49 x 49,59 x 59: (1) 1st row: first order elements. (2) 2nd row: second
order elements. (3) 3rd row: third order elements. Type 2 b.c. is used, and
ke = 10% is fixed. Even if none of the triangle edges is aligned with the strong
anisotropic transport direction, the higher order elements still show that the
transient layer is represented better.

Figure 7. The contour plots of T at different ¢ : 10*, 10,10, 107, 10° by third
order elements. Type 2 b.c. is used, and the grid resolution is also fixed at
59 x59. Even if none of the triangle edges is aligned with the strong anisotropic
direction, the narrow profile width is still resolved by the 2nd and 3rd order
elements.

Figure 8. The profile width at different k¢ : 10',10°,10°,107,10° by first and
third order elements. Line «a : linear elements with Type 1 b.c.; Line b : third
order elements with Type 1 b.c.; Line ¢ : third order elements with Type 2
b.c..
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